The basal function of teleost prolactin as a key regulator on ion uptake identified with zebrafish knockout models
نویسندگان
چکیده
Prolactin (PRL) is an anterior pituitary hormone with a broad range of functions. Its ability to stimulate lactogenesis, maternal behavior, growth and development, osmoregulation, and epithelial ion transport has been reported in many vertebrates. In our present study, we have targeted the zebrafish prl locus via transcription activator-like effector nucleases (TALENs). Two independent targeted mutant lines with premature termination of the putative sequence of PRL peptides were generated. All prl-deficient zebrafish progeny died at 6-16 days post-fertilization stage (dpf) in egg water. However, the prl-deficient larvae thrived and survived through adulthood in brackish water (5175 mg/L ocean salts), without obvious defects in somatic growth or reproduction. When raised in egg water, the expression levels of certain key Na(+)/Cl(-) cotransporters in the gills and Na(+)/K(+)-ATPase subunits, Na(+)/H(+) exchangers and Na(+)/Cl(-) transporters in the pronephros of prl-deficient larvae were down-regulated at 5 dpf, which caused Na(+)/K(+)/Cl(-) uptake defects in the mutant fish at 6 dpf. Our present results demonstrate that the primary function of zebrafish prl is osmoregulation via governing the uptake and homeostasis of Na(+), K(+) and Cl(-). Our study provides valuable evidence to understand the mechanisms of PRL function better through both phylogenetic and physiological perspectives.
منابع مشابه
Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia.
The peptide hormone prolactin is a functionally versatile hormone produced by the vertebrate pituitary. Comparative studies over the last six decades have revealed that a conserved function for prolactin across vertebrates is the regulation of ion and water transport in a variety of tissues including those responsible for whole-organism ion homeostasis. In teleost fishes, prolactin was identifi...
متن کاملProlactin regulates transcription of the ion uptake Na+/Cl- cotransporter (ncc) gene in zebrafish gill.
Prolactin (PRL) is a well-known regulator of ion and water transport within osmoregulatory tissues across vertebrate species, yet how PRL acts on some of its target tissues remains poorly understood. Using zebrafish as a model, we show that ionocytes in the gill directly respond to systemic PRL to regulate mechanisms of ion uptake. Ion-poor conditions led to increases in the expression of PRL r...
متن کاملProlactin and growth hormone in fish osmoregulation.
Prolactin is an important regulator of multiple biological functions in vertebrates, and has been viewed as essential to ion uptake as well as reduction in ion and water permeability of osmoregulatory surfaces in freshwater and euryhaline fish. Prolactin-releasing peptide seems to stimulate prolactin expression in the pituitary and peripheral organs during freshwater adaptation. Growth hormone,...
متن کاملEstradiol Affects Prolactin Producing Cells and Calcium levels in a Teleost, Heteropneustesfossilis, Kept in Different Calcium Concentrations
Background: This study investigated the effects of estradiol on plasma calcium and prolactin cells of Heteropneustes fossilis kept in calcium-deficient and normal freshwater. Methods: Fish were deprived of food and divided into groups A-D. Group A and B were kept in artificial freshwater with normal electrolytes. Group C and D were maintained in calcium-deficient freshwater. Vehicle was admin...
متن کامل15-P045 The hox gene complement of a basal teleost, Pantodon bucholzi (Osteoglossomorpha)
Gene and whole genome duplications have profoundly shaped the structure and function of the vertebrate genome. Teleost fish, which comprise approximately 50% of all known vertebrate species, have undergone a third round of whole genome duplication (3R) above and beyond the two rounds of whole genome duplication shared by all vertebrates (2R). Most non-teleost vertebrates including tetrapods hav...
متن کامل